Robust Combination of Local Controllers
نویسندگان
چکیده
Finding solutions to high dimensional Markov Decision Processes (MDPs) is a difficult prob lem, especially in the presence of uncertainty or if the actions and time measurements are contin uous. Frequently this difficulty can be alleviated by the availability of problem-specific knowledge. For example, it may be relatively easy to design controllers that are good locally, though having no global guarantees. We propose a non paramet ric method to combine these local controllers to obtain globally good solutions. We apply this formulation to two types of problems: motion planning (stochastic shortest path problems) and discounted-cost MDPs. For motion planning, we argue that only considering the expected cost of a path may be overly simplistic in the presence of uncertainty. We propose an alternative: find ing the minimum cost path, subject to the con straint that the robot must reach the goal with high probability. For this problem, we prove that a polynomial number of samples is sufficient to obtain a high probability path. For discounted MDPs, we consider various problem formulations that explicitly deal with model uncertainty. We provide empirical evidence of the usefulness of these approaches using the control of a robot arm.
منابع مشابه
Presentation of quasi-linear piecewise selected models simultaneously with designing of bump-less optimal robust controller for nonlinear vibration control of composite plates
The idea of using quasi-linear piecewise models has been established on the decomposition of complicated nonlinear systems, simultaneously designing with local controllers. Since the proper performance and the final system close loop stability are vital in multi-model controllers designing, the main problem in multi-model controllers is the number of the local models and their position not payi...
متن کاملRobust Fixed-order Gain-scheduling Autopilot Design using State-space Stability-Preserving Interpolation
In this paper, a robust autopilot is proposed using stable interpolation based on Youla parameterization. The most important condition of stable interpolation between local controllers is the preservation of stability so that each local controller can ensure stability for an open neighborhood around a nominal point. The proposed design used fixed-order robust controller with parameter-dependent...
متن کاملDistributed Nonlinear Robust Control for Power Flow in Islanded Microgrids
In this paper, a robust local controller has been designed to balance the power for distributed energy resources (DERs) in an islanded microgrid. Three different DER types are considered in this study; photovoltaic systems, battery energy storage systems, and synchronous generators. Since DER dynamics are nonlinear and uncertain, which may destabilize the power system or decrease the performanc...
متن کاملRobust Coordinated Design of UPFC Damping Controller and PSS Using Chaotic Optimization Algorithm
A Chaotic Optimization Algorithm (COA) based approach for the robust coordinated design of the UPFC power oscillation damping controller and the conventional power system stabilizer has been investigated in this paper. Chaotic Optimization Algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from local optimum, is a promising tool fo...
متن کاملDelay-dependent stability for transparent bilateral teleoperation system: an LMI approach
There are two significant goals in teleoperation systems: Stability and performance. This paper introduces an LMI-based robust control method for bilateral transparent teleoperation systems in presence of model mismatch. The uncertainties in time delay in communication channel, task environment and model parameters of master-slave systems is called model mismatch. The time delay in communicatio...
متن کاملEnhancement of Robust Tracking Performance via Switching Supervisory Adaptive Control
When the process is highly uncertain, even linear minimum phase systems must sacrifice desirable feedback control benefits to avoid an excessive ‘cost of feedback’, while preserving the robust stability. In this paper, the problem of supervisory based switching Quantitative Feedback Theory (QFT) control is proposed for the control of highly uncertain plants. According to this strategy, the unce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001